MBARI Ridges 2005 Expedition
Juan de Fuca Leg: August 7–18, 2005
Gorda Leg: August 22–September 2, 2005
August 15
Tiburon dive 881, Axial Lava Pond, Juan de Fuca Ridge
The remarkably calm weather continues, and we had another successful dive! Thank you, Neptune! (Or should that be Madame Pele we thank? Does she have powers at volcanoes other than in Hawaii?)
Alice Davis writes:

Flabellegerid polychaete, above a sheet flow. They have a remarkable, undulating swimming style and we took some terrific video footage of them swimming along in front of the ROV. This species is subtly different from the one shown in August 9th's update.
Biology was fairly sparse with sudden islands of abundance. We saw flocks of Flabelligerid polychaete worms congregating for reasons only known to them. Rare lava spires had colonies of sponges, corals, and crinoids.

Vase-shaped sponge on a thin crust of a jumbled sheet flow. These fragile, glassy rocks would be ground to bits if sampled with a dredge, which is basically a heavy chain-mesh bag dragged on the seafloor and is the traditional way of sampling rocks on the sea floor.
Nearly all of the samples we have collected so far have glassy rinds or consist entirely of volcanic glass, which means it cooled so rapidly in contact with cold seawater that it didn't have time to crystallize. This is the best material to analyze because it represents the quenched melt composition. When we return I will analyze these with an electron microprobe. Looks like I will have many hours of analytical work ahead of me!
Brian Cousens writes:
It's been a pretty amazing couple of days looking at lava ponds on the Juan de Fuca Ridge. We have seen a huge variety of lava forms, ranging from bulbous pillow lavas to contorted sheet flows. We have also seen the lava crusts that once sat at the top of lava ponds while they were full of circulating lava that have now sunken to the bottom of the pond as the underlying lava drained out. We have also observed what appear to be spatter vents at a few locations, that are common at volcanoes above the water (such as Hawaii) but are not often seen on the sea floor.


Gill and Laura took turns flying the ROV (using a joystick, in Gill's right hand). Bryan, ROV pilot, assists to her right. Brian Cousens is beyond, at the science camera controls, Jenny is annotating the ROV video, Nick is running the real-time GIS, and a host of note-takers and observers are out of view in the "peanut gallery" at the back of the ROV control room. A second ROV pilot sits out of view to Gill's left; he operates the manipulator arm, the rest of the cameras, sampling gear, and other hydraulic functions on the vehicle, selects music for the control room's ambiance, and handles tether management.
Dave Clague adds:
Our group has now found limu o Pele (image on right) at sites as scattered as Loihi Seamount, Kilauea's Puna Ridge, and the North Arch lava field in Hawaii; at mid-ocean ridges such as the Gorda Ridge, the East Pacific Rise near Baja California, at 21N, and near Easter Island; and in the back-arc Fiji Basin. A goal for this cruise was to determine if limu o Pele and related small lava fragments also occurred on the Juan de Fuca Ridge. They do! We have changed our goal somewhat: can we find a place here where we do NOT find abundant limu o Pele? These fragments are important because they demonstrate basaltic eruptions in all these settings are driven by a magmatic gas phase that makes their eruptions energetic-with low-level fountains and strombolian-like explosions similar to those that occur on land. The amounts of magmatic gas (mainly carbon dioxide) required to produce the abundant limu o Pele and drive the eruptions suggest that submarine volcanism adds much more carbon dioxide to the deep ocean than previously thought. The particles produced are dispersed in the water column and distributed unknown distances by near-bottom currents. Determining the dispersal pattern of these pyroclastic particles at two sites will be a major goal of the upcoming Gorda Ridge leg of this cruise.
Pele's hair, a thread of lava glass pulled like taffy while still molten during a mildy explosive eruption, collected from 2300m depth in the lava pond. The lumps are probably plagioclase crystals the lava stretched around. The fragment is about 1cm long.
i
Dave emptying the sample drawer of the ROV. Keeping track of which black, shiny rock came from where along the dive is a tricky but critical task. If we mix them up, it will confuse our interpretations later on.